64 research outputs found

    International agricultural research to reduce food risks: case studies on aflatoxins

    Get PDF
    Despite massive expansion of human and livestock populations, fuelled by agricultural innovations, nearly one billion people are hungry and 2 billion are sickened each year from the food they eat. Agricultural and food systems are intimately connected to health outcomes, but health policy and programs often stop at the clinic door. A consensus is growing that the disconnection between agriculture, health and nutrition is at least partly responsible for the disease burden associated with food and farming. Mycotoxins produced by fungi are one of the most serious food safety problems affecting staple crops (especially maize and groundnuts). Aflatoxins, the best studied of these mycotoxins, cause around 90,000 cases of liver cancer each year and are strongly associated with stunting and immune suppression in children. Mycotoxins also cause major economic disruptions through their impacts on trade and livestock production. In this paper we use the case of fungal toxins to explore how agricultural research can produce innovations, understand incentives and enable institutions to improve, simultaneously, food safety, food accessibility for poor consumers and access to markets for smallholder farmers, thus making the case for research investors to support research into agricultural approaches for enhancing food safety in value chains. We first discuss the evolution of food safety research within the CGIAR. Then we show how taking an epidemiological and economic perspective on aflatoxin research connects health and nutrition outcomes. Finally, we present three case studies illustrating the traditional strengths of CGIAR research: breeding better varieties and developing new technologies

    Effects of bottom trawling on the quantity and biochemical composition of organic matter in coastal marine sediments (Thermaikos Gulf, northwestern Aegean Sea)

    No full text
    The effects of bottom trawling on quantity and the biochemical composition of sediment organic matter were assessed, along a gradient of trophic state in a coastal area of the Gulf of Thermaikos (Aegean Sea). Total organic carbon concentrations and other organic variables (such as biopolymeric C concentrations) displayed a significant increase immediately after the initiation of trawling activities, reaching unexpectedly high values when compared to a control (i.e. samples collected before trawling events). The lack of significant changes in photopigment content of the sediments, observed after trawling events, indicates that primary production processes did not change markedly. Since also sediment properties did not vary significantly during the period of investigation, the observed changes in sediment organic content can be related with organic matter uplift from deeper sediment layers, caused by reworking (bottom up transfer) and/or reduced C and N consumption by benthic biota. Trawling determined also significant changes in the biochemical composition of sediment organic matter. Indeed, sediment resuspension increased the hydrolysable fractions of protein and carbohydrate pools, likely to be the result of increased degradation rates under oxic conditions. Such an effect indicates that trawling may increase the quality and bioavailability of organic C to consumers; this, in turn, could modify the energetic and trophic state of the benthic systems. We conclude that bottom trawling might have important trophodynamic consequences, for benthic microbial and meiofaunal assemblages

    Blockchain Technology for Access and Authorization Management in the Internet of Things

    No full text
    The Internet of Things (IoT) continues to suffer from security issues, even after 20 years of technological evolution and continuing efforts. While the decentralization of the IoT seems to be a solution for improved resource management and scalability, most of the services remain centralized, exposing IoT systems to malicious attacks. As a result, this leads to functionality failures and endangers user and data integrity. Identity and Access Management (IAM) has the ability to provide defense against a great number of security threats. Additionally, blockchain is a technology which can natively support decentralization, as well as access and authorization management techniques, using the corresponding programmable logic and leveraging cryptographic mechanisms for privacy and security. Using standardized frameworks (e.g., Decentralized Identifiers and Verifiable Credentials), a blockchain-based access and authorization solution can present the basis for a uniform decentralized IAM framework for the IoT. To this end, this paper presents a proof-of-concept design and implementation of an IAM solution based on Solidity smart contracts, targeting two areas: firstly, supporting the fact that blockchain can seamlessly provide the basis for a decentralized IAM framework, while secondly (and most importantly) exploring the challenge of integrating within existing IoT systems, avoiding redesigning and redeveloping on behalf of IoT manufacturers

    Organic matter composition of the continental shelf and bathyal sediments of the Cretan sea (NE Mediterranean)

    No full text
    The seasonal, spatial and bathymetric changes in the distribution of chloroplastic pigments (Chl a, phaeopigments and CPE), TOC, TON, ATP, bottom water nutrient content and the main biochemical classes of organic compounds (lipids, proteins and carbohydrates) were recorded from May 1994 to September 1995 over the continental margin of northern Crete. The concentration of chloroplastic pigment equivalents (CPE) was always low, dropping dramatically along the shelf-slope gradient. Microbial activity (ATP) also dropped sharply beyond the continental shelf following a distribution pattern similar to TOC and TON. Lipid, protein and carbohydrate concentrations, as well as biopolymeric carbon were comparable to those reported for other more productive areas, however, the quality of the organic matter itself was rather poor. Thus, carbohydrates, the dominant biochemical class, were characterised by being highly (80-99%) refractory, as soluble carbohydrates represented (on annual average) only 6% of the total carbohydrate pool. Protein and lipid concentrations strongly decreased with depth, indicating depletion of trophic resources in the bathyal zone. Proteins appeared to be the more degradable compounds and indeed the protein to carbohydrate ratios were found to decrease strongly in the deeper stations. Organic matter content and quality decreased both with increasing distance from the coast and within the sediment. All sedimentary organic compounds were found to vary between sampling periods, with the changes being more pronounced over the continental shelf. The different temporal patterns of the various components suggest a different composition and/or origin of the OM inputs during the different sampling periods. The amount of material reaching the sediments below 540 m is extremely low, suggesting that most of the organic material is decomposed and/or utilised before reaching the sea floor. In conclusion, the continental shelf and bathyal sediments of the Cretan Sea can be considered, from atrophic point of view, as two different subsystems
    corecore